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The analysis of the Bethe-Goldstone equation for solid 3He is performed by 
removing the difficulties of symmetry encountered in a previously published 
version of the problem. Better agreement with experimental data is obtained. 
The new form of the Bethe-Goldstone two-body equation has special significance 
for problems related to fission and to solidification of neutron matter. 

1. INTRODUCTION 

In three previous publications 1-3 (hereafter referred to as I, II, and III 
respectively), a self-consistent t-matrix method was used to calculate the 
ground-state energies of solid 3He, solid H2, and solid neutrons. The two- 
body wave function ~b12 satisfies the simplified Bethe-Ooldstone equation, 
known as the Iwamoto-Namaizawa-Guyer-Zane (INGZ) equation 

IT1 "-1- T2 + U(1) + U(2) + V12]~/12 = E121//12 ( l )  

where T~ and T 2 are the kinetic energy operators of particles 1 and 2, 
respectively; U(i) is the self-consistent one-body potential for ihe ith particl~; 
and V12 is the two-body potential. U(i) was assumed to be a harmonic 
oscillator potential of the form 

U(i) = U(O) + ½m~o2(ri - Ri) 2 (2) 
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where m is the mass of the particle, 09 the oscillation frequency, r~ the co- 
ordinate of the ith particle at any moment, and R~ its lattice site. If V~2 = 0, 
~12 then reduces to the product of two Gaussians, and E12 would be just 
213h~ + U(0)]. 

In terms of "relative" and "center-of-mass" coordinates r and R 
respectively, (1) reduces to 

E - ( h Z / m ) V  2 + U(r) + V(r)]$(r) = (E~z {h~o)qs(r) (3) 

where 

U(1) + U(2) = U(r) + U(R) 

U(R) = rncoZ[R - ½(R1 + R2)] 2 

U(r) = 2U(0) + ¼mco2(r - A) 2, A = R 2 - R1 

Equation (3) can be rewritten 

E - ( h Z / m ) V  z + ¼rnogZr z - ½mo~Er. A + V(r)]~(r) = E'z2~(r) (4) 

where 

E'~2 - E12 - 2U(0) - ~h~o - ¼m~oZA 2 

The INGZ equation was solved numerically by expanding ~O(r) in terms of 
partial waves, which resulted in a set of coupled differential equations for 
the various partial waves. The reader should consult I and II for full details. 

The presence of the r .  A term in the ING Z equation is undesirable 
since it couples t h e / t h  partial wave state to the (l _+ 1)th states. Thus the 
r .  A term admits states that are not allowed by the Pauli principle. For  
example, in the neutron solid computation, where V(r) depends on the spin 
and angular momentum states, the 1S o state would be coupled to the apx 
state, which is forbidden by the Pauli principle. In paper II, where the neutron 
solid was studied, these "unwanted"  waves were eliminated by making 
different approximations. Clearly, these unwanted waves would not enter if 
U(r) were invariant under space inversion. The main object of this paper is 
to find a U(r) that is invariant under space inversion and then use it to 
calculate the ground-state energy of solid 3He. A similar scheme was 
mentioned by Brandow. 4 The inclusion of this symmetric U(r) in the neutron 
solid computation should automatically exclude the unwanted waves in the 
set of coupled equations. The neutron solid computation using the symmetric 
U(r) derived in this paper is now being carried out. 
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be 

2. S Y M M E T R I C  U(r) 

We require the INGZ equation for two particles in the V12 = 0 case to 

[T, + T= + Us(1,2)~¢+(1,2)= Eo~¢+(1, 2) (5) 

where q5+(1,2) are properly antisymmetrized wave functions for the two 
particles. These antisymmetrized wave functions require Us(l,2) to be 
symmetric under particle exchange. For each particle the equation of 
motion is simply 

[T~ + U(1)]¢1(1) = [3hc~ + U(0)l¢~(1) (6) 

where U(1) is given by Eq. (2) and ¢2(1) is a Gaussian given by 

0~3/2 [ 0~2 ] 
q~l(1) - CRl(rl ) __- ~7~ex p _~_(r I _ R1)2 ; ~2 moo = h (7) 

We choose Eg = 3hco + 2Uo in Eq. (5). The basis of this choice is that this 
eigenvalue is the same as that of the unperturbed, unsymmetrized, relative 
coordinate case. Similarly, ¢+(1, 2) is chosen to be the properly symmetrized 
product of Gaussians, i.e., 

¢-+(1, 2) -- (1/x/~)[¢,(1)~b2(2) _+ ¢2(1)¢1(2)] (8) 

In terms of r and R, Eq. (8) reads 

¢+(1, 2) = 2-1/2¢(R)[¢d(r) _+ Cx(r)] (9) 

where ¢(R) is the "center-of-mass" wave function given by 

[ ( 1 ¢ I ) ( R )  - (Tc/2)a/4 exp - 0~ 2 R 2 (10) 

and 

q~a(r) = (-~)57i exp - ~-(r - A) 2 

01) 
0~3/2 A)2 ] 

q~x(r) - ~ exp [ - ~ ( r  + 

In Eq. (8) the plus (minus) sign corresponds to the spin singlet (triplet) case. 
In terms of r and R, Eq. (5) now reduces to 

--4ram V~ - rn + Us(l,2) ¢-+(1, 2) - [3hco + 2U(0)]~b-+(1,2) (12) 
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If we write 

Eq. (11) becomes 

where 

Since 

Us(l, 2) ~ U~(R) + Us(r) (13) 

[ - (h2 /m)V 2 + Us(r) + 3hco3qS+-(r) = [3he) + 2U(O)]4~+-(r) (14) 

Us(R) = mco2ER - ½(R1 + R2)] 2 (15) 

2 , f 2 ~ ]  ~ - ( r -  A) 2 •a(r) ± 3 ~-(r + A) 2 ~x(r) (16) 

we can finally solve for Us(r), thus obtaining 

I " ( tanh (½~2r "A) -] _ ( ½ ~ 2 r - _  S S = ~  V (r) -- 2v(o)  + 2 r 2 + A - 2r.  cotan h A ) |  (17) 

We notice that U~(r) is now symmetric with respect to the transformation 
r ~ - r. However, when ½,r- A >> 1, Eq. (17) reduces in form to the U(r) used 
in I. 

The form of Us(r) contains a great deal of structure, which is exhibited 
in Figs. 1 and 2. In Fig. 1 we plot 

f(r) = r 2 q- A 2 - -  2r. A tanh (½~2r • A) (18) 

versus r for fixed A and co (or ~2) for different values of 0, the angle between 
r and A. It is seen that for r l A (an improbable geometric configuration), 

f ( r )  ~ r 2 q- A 2 and the potential has no spikes in the middle. In the most 
probable configuration, 0 = 0, f(r) has a very pronounced central barrier 
whose height depends on the value of A. In order to exhibit the dependence 
of Us(r) on various shells of a bcc structure, we plot f(x) versus x at 0 = 0 
for the first, fifth, and tenth shells in Fig. 2. As expected, the further away the 
shell, the more pronounced the central barrier, making the tunneling process 
highly improbable. A high tunneling probability is found, however, for the 
first shell, whose contribution to the ground-state energy is the most con- 
spicuous. We do not plot U(S = 1) because it is very similar and nothing 
new would be learned from the graphs, whose main purpose is to illustrate 
the general behavior. At the moment of computing E/N, the ground-state 
energy per particle, we shall present the results for U(S -- 0). For complete- 
ness we have also computed E/N employing U(S = 1) and the results were 
essentially unchanged. If on the other hand the two-body potential V(r) 
should depend upon S, as it does in the nuclear case, the dependence U(S) 
would then be very important. 
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Fig.  1. The functionf(r) of Eq. (18) vs. r w i th  A = 3 A, a 2 = 1.5 A - 2  for  two 
values of 0, the angle between r and A. 
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Fig.  2. f ( x )  vs. x = r / r  o for  the  first,  fifth, and tenth shells of  a bcc structure at 
O = O. d ~ A / r o ,  r 0 = 4 . 3 A .  

3. P A R T I A L  W A V E  E X P A N S I O N  

We have used Eq. (17) for U~(r) in Eq. (3) to compute  the ground-state 
energy for solid 3He, using the t-matrix approach described in I. Since we 
are neglecting exchange effects and spin configuration we can use either 
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U~+(r) or UV(r). For convenience, we have chosen U+(r). (Us- was tested in 
a few cases and gave almost identical results as Us+.) Upon making a partial 
wave expansion of ~(r) 

~O(r) = ~ ( 2 / +  1)O,(r)P,(#) (19) 
l ,  e v e n  

the INGZ equation results in a set of coupled eigenvalue equations with 
eigenvalue r/(l is even) 

GT(x) + (q - Et)Gt + ½a4xd ~ (21' + 1)Wn,(x)Gv(x ) = 0 (20) 
l ' ,  e v e n  

where 

Wu,(x ) = #PI(#)Pr(12) tanh (½.2x d/O d# 

In the above, the notation is as follows : 

X -~- F /F  0 , 

p = mvro3 (7 = 4  

d = A/ro 

fcc; 7 = 2  bcc) 

where p is the matter density, a = er 0, and moreover 

Gl(x) = xOl, p = r . A/rA 

I(I + 1) 1 mr~ 
El - -  X 2  "}" _a'*x 2 + ~ - V ( x )  

mr2 E 2mr 2 3 2 - -  1a4d2 
= 2a  

In the case of a neutron crystal, where the potential V(r) depends on the 
spin configuration in the various states, a more general expansion for ~,(r) 
that includes the spin wave function is necessary 

The energy per atom of the solid in the t-matrix approach is given by 

E/N = 3hco + ½ ~, Nke, k (21) 
k 

The first term is the kinetic energy per atom for a simple-harmonic-oscillator 
(SHO) potential, Nk is the number of particles in the kth shell, and ek is the 
shell energy given by 

fo'° Z it(Z1 + 1)j,(Zk)Gt(x) V(x) {exp [--1a2(x2 + d2)]}x dx 
' (22) 

g k  = m 

fo ~ i'(21 + 1)j~(ZOGt(x){exp [-¼a2(x 2 + d2)]}x dx 
t 
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where Z k ~ ia2xdk/2, and A k = rodk; A k is the distance from the atom under 
consideration to the kth shell and jz(Z) is the spherical Bessel function of 
order I. A bcc structure is assumed throughout. 

The computation from now on is identical to that discussed in I, with 
the self-consistent requirement [cf. Eq. (30) in I] 

U(O) ~- 2 Uk ~--- 2 Nkek -- ¼he) ( 2 3 )  
k k 

where U k is now given by 

fo N k ~ i~(2l + 1)jt(Zk)Gz(x)V(x){ex p [--3aa(x2 + d2)]}x dx 

Uk = 2V/2 oo' (24) 
f y" i'(21 + 1)jt(Zk)G,(x){exp + d2)]}x [-¼a2(x 2 dx 

o l 

4. RESULTS AND DISCUSSIONS 

The ground-state energy per atom for solid 3He was determined using 
two different two-body potentials : 

(a) The Lennard-Jones potential given by 1 

V(r) = 40:8[(2.556/r) 12 - (2.556/r) 6] 

(b) The Beck potential given by ~ 

Dp2i3 r 2 p2 V(r) = Vo [ e x p  ( - c~r  - fir6)] ( r  2 + + 

TABLE I 

C o n t r i b u t i o n s  p e r  P a r t i c l e  to  t h e  P o t e n t i a l  E n e r g y  fo r  S o l i d  3 H e  (bcc)  f r o m  t h e  F i r s t  T e n  She l l s  
U s i n g  t h e  L e n n a r d - J o n e s  P o t e n t i a l  a t  f2 = 21.0  c m 3 / m o l e ,  a 2 = 1.68 A - z  a 

N o .  o f  Shel l  e n e r g y  

Shel l  no .  k p a r t i c l e s  N k Ak, A ek, K ½Nkek, K UR, K 

1 8 3 .564 - 2 .065 - 8.261 - 35.26 
2 6 4 .116  - 2 . 2 6 2  - 6 . 7 8 6  - 16.66 

3 12 5 .820 - 0 .390  - 2 .342 - 4 .027 
4 24 6 .824 - 0 .136 - 1.631 - 2 .809 
5 8 7.129 - 0 .102  - 0 .407 - 0 .700 

6 6 8 .232 - 0 .040  - 0 .120  - 0 .203 
7 24 8 .969 - 0 .023 - 0 .2781 - 0 .4633 
8 24  9 .203 - 0 .020 - 0 .2366  - 0 .3916  
9 24 10.080 - 0.011 - 0 .1348 - 0 .2177 

10 32 10.693 - 0 . 0 0 8  - 0 . 1 2 5 1  - 0 . 1 9 8 8  

" K i n e t i c  e n e r g y  = 20.38 K ,  p o t e n t i a l  e n e r g y  = - 2 0 . 3 2  K ,  E/N = 0.06 K.  
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TABLE I I  

C o n t r i b u t i o n s  p e r  P a r t i c l e  to  t h e  P o t e n t i a l  E n e r g y  fo r  So l id  3 H e  (bcc)  f r o m  the  F i r s t  T e n  She l l s  
U s i n g  t h e  L e n n a r d - J o n e s  P o t e n t i a l  a t  f~ - 23.0  c m ~ / m o l e ,  a 2 = 1.44 A - 2  " 

N o .  o f  Shel l  e n e r g y  

She l l  no .  k particles N k Ak, A ek, K ½Nk,S k. K Uk, K 

l 8 3.672 1.914 - 7.656 - 31.41 

2 6 4 .242 - 1.981 - 5 . 9 4 2  - 14.47 
3 12 5.998 0.339 - 2 .032 - 3 .467 

4 24 7.033 0.117 - 1.406 - 2.421 

5 8 7.347 - 0 .088 - 0 . 3 5 0  - 0 .603 
6 6 8.484 0 .034 - 0 .102 - 0 .174 

7 24 9.243 - 0 .020 - 0 . 2 3 6  - 0 .397 
8 24 9.485 - 0 .017 - 0 .200  - 0 .335 
9 24 10.389 - 0 .009 - 0 .113 - 0 .185 

10 32 11.021 0.007 - 0 .105 - 0 .169 

" K i n e t i c  e n e r g y  - 17.43 K .  p o t e n t i a l  e n e r g y  = 18.14 K .  E N - - 0 . 7 5  K .  

where 

V o = 10.371, A = 44.62 x 104 . c~ = 4.39 

D = 972.5. fl = 3.746 x 10 -4,  p -- 0.675 

The above potentials are in K. with r measured in A. The results are sum- 
marized in  Tables  I-V. We found that  ten shells were sufficient to produce 

convergence to within ~0 .5  5o in the sum over shells. In  Fig. 3 we show the 
results of our  E / N  vs. mola r  vo lume f~ using the Lennard-Jones  potential .  
(The result for the Beck potent ia l  coincides a lmost  exactly with the Lennard-  

T A B L E  I I I  

C o n t r i b u t i o n s  p e r  P a r t i c l e  to  t h e  P o t e n t i a l  E n e r g y  fo r  S o l i d  3 H e  (bcc)  f r o m  t h e  F i r s t  T e n  She l l s  
U s i n g  t h e  L e n n a r d - J o n e s  P o t e n t i a l  a t  ~ = 23.94 e m a / m o l e ,  ~2 = 1.35 ~ - 2  a 

N o .  o f  She l l  e n e r g y  

She l l  no .  k p a r t i c l e s  Ni/  Ak, A e k, K 1Nk~,k, K Uk? K 

1 8 3 .724 --  1.846 --  7 .384 - 29.82 
2 6 4 .300  - 1.869 - - 5 . 6 0 7  --  13.60 

3 12 6 .080 - 0.3181 --  1.909 --  3 .242 
4 24 7 .129 - 0 . 1 0 9 7  - 1.317 - - 2 . 2 6 6  
5 8 7.448 - 0 .0820  - 0 .3279  --  0 .5645 
6 6 8.600 --  0 .0317  --  0.0951 - 0 .1627 

7 24  9 .370  - 0 .0183 - 0 .2190  - 0 .3708  
8 24  9 .615 - 0 . 0 1 5 5  - 0 . 1 8 5 7  - - 0 . 3 1 2 6  
9 24 10.531 - 0 . 0 0 8 8  - - 0 . 1 0 5 1  - - 0 . 1 7 2 8  

10 32 11.171 - 0 . 0 0 6 1  - - 0 . 0 9 7 3  - 0 . 1 5 7 5  

a K i n e t i c  e n e r g y  = 16.32 K ,  p o t e n t i a l  e n e r g y  = - 17.25 K ,  E/N = - 0 . 9 3  K .  
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TABLE IV 

Contribut ions per Particle to the Potential  Energy for Solid 3He (bcc) from the First Ten Shells 
Using the Beck Potential  at f l  = 21.0 cm3/mole, ct 2 = 1.81/~-2 a 

No. of Shell energy 
Shell no. k particles N k Ak, flk 8k' K 1Nkek, K Uk, K 

1 8 3.564 -2 .305  -9.211 - 38.74 
2 6 4.116 -2 .480  -7 .439  -18 .05  
3 12 5.820 -0 .376  -2 .258  -3 .823  
4 24 6.824 -0 .126  - 1.512 -2 .585 
5 8 7.129 -0 .0938 -0 .375  -0.641 
6 6 8.232 -0 .036  -0 .109  -0 .183  
7 24 8.969 -0.021 -0 .253  -0 .417  
8 24 9.203 -0 .0179 -0 .215  -0 .352  
9 24 10.080 -0 .0102 -0 .122  -0 .195  

10 32 10.693 -0 .020  -0 .319  -0 .413 

aKinetic, e n e r g y =  21.93 K, potential  energy = -21 .82  K, E/N = 0.10 K. 

Jones curve.) Also shown are the experimental results, s The present results 
show better agreement with experiment over the previous ones, especially 
with regards to  the slope of the curve. 

The "wound integral ''1 x was computed at f) = 23.94 cm3/mole, using 
the Lennard-Jones potential, and a value of 0.15 (<< 1) was obtained. This 
indicates that the two-body approximation should be valid in this problem. 
Values of ~2 vs. f~ obtained in the present work are shown in Fig. 4 together 
with those of I and recent results of Pandharipande 6 and Domany e t  al.  7 

TABLE V 

Contributions per Particle to the Potential  Energy for Solid 3He (bcc) from the First Ten Shells 
Using the Beck Potential  at f~ = 23.0 cm3/mole, c~ 2 = 1 .53 /~ -z ,  

No. of Shell energy 
Shell no. k particles N k Ak, A gk, K 1Nkek, K Uk, K 

1 8 3.672 -2 .108 -8 .430  -34 .34  
2 6 4.242 -2 .149  -6 .448  - 15.59 
3 12 5.998 -0 .327  -1 .962  -3 .294  
4 24 7.033 -0 .109  -1 .306  -2 .232  
5 8 7.347 -0.0808 -0 ,323  -0 .5532 
6 6 8.484 -0 .0310 -0 .0929 -0 .1576 
7 24 9.243 -0 .0178 -0 .2139 -0.3573 
8 24 9.485 -0 .01512 -0 .1814  -0 .3013 
9 24 10.389 -0 .0086 -0 .1026 -0 .1664 

10 32 11.021 -0 .0059 -0 .0949 -0 .1515 

"Kinetic energy = 18.47 K, potential  energy = - 19.15 K, E/N = --0.68 K. 
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He 3 b c c  
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Fig. 3. E/N (K) vs. ~ (cm3/mole) of the present work and paper I, both using 
the Lennard-Jones potential, compared with the experimental results. 

We also computed the average correlation function ~ for the first 
and fourth shells using the Lennard-Jones potential at f~ = 23.94 cm3/mole. 
The results are qualitatively the same as in I and are shown in Fig. 5. 

The close agreement between the results of the present calculation and 
experiment for the ground-state energies of solid 3He, a quantum solid, 

.< 

He 3 bcc 

¢t.2(/~ -2) vs. ~ (cm3/mo le )  

2" 0 ~ I P.W. (BECK) 
~ 1~ P.W. (L-J) 

1.8 ~ ~  m DKT (F-M) 

, ,  PAPER, , L - , ,  

1.4 11I 

1.0 
!Z 

0.8 

20.0 21.0 2 .0 2 .0 2~,.0 Q (cm3/mole} 

Fig. 4. c~ 2 (A -2)  vs. f~ (cm3/mole) obta ined in the present w o r k  (P.W,) w i th  
Beck and Lennard-Jones potentials compared with those of paper I, Pand- 
haripande (PP), who used the Lennard-Jones potential, and of Domany, 
Kirson, and Thieberger (DKT), whose used the Frost-Musulin potential 
(FM). 
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1.5 

He 3 bcc 
CORRELATION FUNCTION 

LENNARD -JONES 
=23.9/,. cm3/mole 

I . . . ~ "  [ I I I I I 
ol.s ll.0 1.5 2.0 2.s 3.0 3.s a.o 4.s ~.o • 

r(A) 

Fig. 5. Average correlation function ~ for the first and fourth shells using the 
Lennard-Jones  potential  at  f~ = 23194 cm3/mole. 

indicates that this method should be applicable to other quantum solids 
as well, in particular, solid neutrons. However, the neutron solid problem is 
more complex because of the complicated dependence of the two-body 
potential on spin and angular momentum. Furthermore, there are no 
nucleon-nucleon two-body potentials that are as reliable as those for solid 
3He. Preliminary results on neutron solid computations using the symmetric 
U~(r) do indicate substantial differences between Reid s and Bethe-Johnson 9 
two-body potentials, even though they both reproduce nucleon-nucleon 
scattering phase shifts equally well. 

5. CONCLUSION 

The symmetric one-body potential described in Section 2 has several 
interesting features. First of all, it improves considerably the single-particle 
energies with respect to the results of I, as indicated in Fig. 3. Not only is 
the curve of E/N closer to the experimental curve, but the slope is also 
improved, thus producing better values of the sound velocities and elastic 
constants. 

The general shape of Us(r) is also of importance for the study of nuclear 
fission where a double-well, one-body potential of that shape is needed. 
The only clipped harmonic oscillator so far published 1° has an unphysical 
spike at r -- 0, thus making the determination of the eigenvalues through a 
matching condition a cumbersome problem. 
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Finally, Eq. (17) solves one of  the problems encountered in the descrip- 
tion of  a PoSsible qua n t um  solid of  neutrons  at densities encountered in the 
deep interior of  mos t  neut ron  stars. A pari ty-violat ing Hami l ton ian  such as 
the one used in II  and in all the subsequent  work  on the same subject by 
other authors  brings into the game waves like 3S 1 that the Pauli  principle 
would not  allow. The present form of Us(r ) allows only the properly sym- 
metrized wave function ~(r) to contr ibute and therefore only the permissible 
nuclear matrix elements. The neut ron  quan tum solid computa t ion  is now 
being repeated and the results will be published elsewhere. 
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